Algebra

1.1. Extra Oefenopgaven

Geef bij onderstaande waarden steeds de juiste waarde van x.

\[x-6 = 8-x\] \(x =\)

\[(x+3)2=28\] \(x =\)

\[ x+1 = \frac{4x}{3} \] \(x =\)

\[ 4(x+3)=60 \] \(x =\)

\[ 2(3x+2)=34 \] \(x =\)

\[ \frac{6(x+1)}{3} = 10 \] \(x =\)

\[ 3(3x+13) = 6(10+x) \] \(x =\)

\[ (x-3)2 = 4 \] \(x =\)

\[ 2x = 27-x \] \(x =\)

\[ \frac{x}{4} + x = 4+x \] \(x =\)

\[ x+1 = \frac{3x+3}{x} \] \(x =\)

Extra oefenopgaven

Zie je geen vragen? Dan zijn er geen vragen beschikbaar voor het huidig niveau.

\[ 3x+5=54-4x \] \(x =\)

\[ \frac{2(x+3)}{x}= \frac{6}{x} \] \(x =\)

\[ 2x+3=10-5x \] \(x =\)

\[ \frac{(x+3)2}{x-5} = \frac{18}{x-5} \] \(x =\)

\[ 1 - \frac{1}{x-1} = \frac{1}{x-1} \] \(x =\)

\[ 8( \frac{x}{5}+1) = 24 \] \(x =\)

\[ \frac{4(x+1)}{3} = \frac{7}{3} + x \] \(x =\)

\[ \frac{1+2x}{3x-1} = 1\] \(x =\)

\[ 2x = \frac{75+3x}{4} \] \(x =\)